请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

笔下文学 www.bixiawenxue.org,全能学霸无错无删减全文免费阅读!

    到了三级文明,有关克隆,已经研究到了分子水平,也就是分子克隆!

    什么是分子克隆呢?

    在分子水平上提供一种纯化和扩增特定dna片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入dna的许多拷贝,从而获得目的基因的扩增。

    分子克隆是指分离一个已知dna序列,并以invivo(*内)方式获得许多复制品的过程。这一复制过程经常被用于增加并获取dna片段中的基因,但也可用来增加某些任意的dna序列,如启动子、非编码序列、化学合成的寡核苷酸或是随机的dna片断。

    将dna片段(或基因)与载体dna分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为dna和cdna克隆两类。

    cdna克隆是以mrna为原材料,经体外反转录合成互补的dna(cdna),再与载体dna分子连接引入寄主细胞。每一cdna反映一种mrna的结构,cdna克隆的分布也反映了mrna的分布。特点是:

    有些生物,如rna病毒没有dna,只能用cdna克隆;

    cdna克隆易筛选,因为cdna库中不包含非结构基因的克隆,而且每一cdna克隆只含一个mrna的信息;

    cdna能在细菌中表达。cdna仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。

    那么,如何做到这一点呢?

    首先是dna片段的制备!

    常用以下方法获得dna片段:1用限制性核酸内切酶将高分子量dna切成一定大小的dna片段;2用物理方法(如超声波)取得dna随机片段;3在已知蛋白质的氨基酸顺序情况下。用人工方法合成对应的基因片段;4从mrna反转录产生cdna。

    其次是载体dna的选择,这里要知道,什么是质粒。

    质粒是细菌染色体外遗传因子。dna呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在。很容易制备。质粒dna可通过转化引入寄主菌。在细胞中有两种状态,一是‘紧密型‘;二是‘松弛型‘。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的dna片段,适用于构建原核生物基因文库,cdna库和次级克隆。

    柯斯(cos)质粒是一类带有噬菌体dna粘性末端顺序的质粒dna分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源dna片段。也能象一般质粒一样携带小片段dna,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。

    而噬菌体dna。常用的λ噬菌体的dna是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体dna两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cdna库。

    m13噬菌体是一种独特的载体系统,它只能侵袭具有f基因的大肠杆菌,但不裂解寄主菌。m13dna(rf)在寄主菌内是双链环状分子,象质粒一样自主复制,制备方法同质粒。寄主菌可分泌含单链dna的m13噬菌体。又能方便地制备单链dna,用于dna顺序分析、定点突变和核酸杂交。

    接着是dna载体的连接。

    dna分子与载体分子连接是克隆过程中的重要环节之一,方法有:1粘性末端连接。dna片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化dna可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。2平头末端连接,用物理方法制备的dna往往是平头末端,有些酶也可产生平头末端。平头dna片段可在某些dna连接酶作用下连接起来,但连接效率不如粘性末端高;3同聚寡核苷酸末端连接。4人工接头分子连接,在平头dna片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。

    连接反应需注意载体dna与dna片段的比率。以λ或cos质粒为载体时。形成线性多连体dna分子,载体与dna片段的比率高些为佳。以质粒为载体时。形成环状分子,比率常为1∶1。

    最后是引入寄主细胞。

  &nb... -->>

本章未完,点击下一页继续阅读

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”